СИГНАЛИЗАЦИОННЫЙ КОМПЛЕКС ОХРАНЫ ПЕРИМЕТРА АВТОНОМНЫЙ Руководство по эксплуатации СПДП.425628.002РЭ

Содержание

1 Описание и работа	6
1.1 Назначение и основные технические характеристики изделия	6
1.2 Состав изделия	12
1.3 Устройство и работа	13
1.4 Маркировка и пломбирование	23
1.5 Упаковка	23
2 Использование по назначению	24
2.1 Эксплуатационные ограничения	24
2.2Подготовка изделия к использованию	26
2.3 Использование изделия	26
3 Техническое обслуживание	27
4 Хранение, транспортирование и утилизация	28
Приложение А (справочное) Структура радиосети комплекса	
Пример оформления для двухуровневой радиосети	29
Приложение Б (справочное) Перечень программно	
интегрированных в комплекс извещателей	30

Настоящее руководство по эксплуатации СПДП.425628.002РЭ (далее по тексту – руководство) содержит общие сведения о назначении, составе, принципе действия, технических характеристиках, функциональных и конструктивных особенностях сигнализационного комплекса охраны периметра автономного (далее по тексту – комплекс), а также указания по размещению и эксплуатации.

Сведения о назначении, составе, технических характеристиках, принципах действия, особенностях функционирования и конструктивного исполнения составных частей комплекса приведены в эксплуатационных документах, перечисленных в таблице 1.1.

Сведения о назначении, составе, технических характеристиках, принципах действия, особенностях функционирования и конструктивного исполнения быстроразвертываемого (мобильного) комплекта периметровых средств обнаружения на базе составных частей комплекса приведены в Руководстве по эксплуатации СПМТ.425628.004РЭ.

Установку и эксплуатацию комплекса должен осуществлять технический персонал, изучивший настоящее руководство и эксплуатационные документы, перечисленные в таблице 1.1.

Таблица 1.1 - Эксплуатационные документы составных частей

Обозначение	Наименование
СПДП.425519.200РЭ	Пульт управления и индикации ПУИ-32. Руководство по эксплуатации.
СПДП.425519.230РЭ	Пульт управления и индикации ПУИ-32-1. Руководство по эксплуатации.
СПМТ.425519.200-01РЭ	Пульт управления и индикации ПУИ-272. Руководство по эксплуатации.
СПМТ.425644.100ПС	Радиомодем центральный сети верхнего уровня РМЦ-ВУ. Паспорт.
СПМТ.425664.100ПС	Ретранслятор сети верхнего уровня РТС-ВУ. Паспорт.
СПДП.425644.200ПС	Радиомодем центральный сети нижнего уровня РМЦ-НУ. Паспорт.
СПДП.436234.001-01ПС	Блок питания резервируемый БПР-12/0,2-1. Паспорт.
СПДП.466233.000ПС	Блок реле БР. Паспорт.
СПДП.466234.000ПС	Блок силового реле БСР. Паспорт.
СПДП.466231.000ПС	Блок сопряжения БС1. Паспорт.
СПДП.466232.000ПС	Блок сопряжения БС2. Паспорт.
СПДП.425664.200ПС	Ретранслятор сети нижнего уровня РТС-НУ. Паспорт.

Продолжение таблицы 1.1

Обозначение	Наименование
СПДП.425142.010РЭ	Извещатель охранный радиолучевой двухпозиционный с передачей извещений по радиоканалу ДПР-200. Руководство по эксплуатации.
СПДП.425142.010-02РЭ	Извещатель охранный радиолучевой двухпозиционный ДПР-200П. Руководство по эксплуатации.
СПМТ.426411.001ПС	Повторитель интерфейса ПИ-RS485. Паспорт.
СПДП.425144.005РЭ	Извещатель охранный объемный радиоволновый ДПР-10В. Руководство по эксплуатации.
СПМТ.425142.410РЭ	Извещатель охранный линейный ПРЕДЕЛ-200-01. Руководство по эксплуатации.
СПМТ.425142.440РЭ	Извещатель охранный линейный ПРЕДЕЛ-600-01. Руководство по эксплуатации.
СПМТ.425132.001РЭ	Извещатель охранный вибрационный ВИБРОН-01. Руководство по эксплуатации.
СПМТ.425144.104РЭ	Извещатель охранный радиоволновый АНТИРИС-01. Руководство по эксплуатации.
СПДП.425624.100-03ПС	Радиомодем оконечный РМО1-868. Паспорт.
СПДП.425624.100ПС	Радиомодем оконечный РМО2. Паспорт.
СПДП.466233.100-02ПС	Блок радиореле БРР-4. Паспорт.
СПМТ.425728.001ПС	Контроллер доступа КД-СКОП. Паспорт.
СПМТ.425664.300ПС	Радиоудлинитель РУ1. Паспорт.
СПМТ.464332.700ПС	Комплект GSM-ПРМ
СПМТ.464214.700ПС	Комплект GSM-ПРД
СПМТ.426419.001	Блок расширения шлейфов сигнализации БР-ШС8
СПМТ.464945.001ПС	Комплект радиоканала тестовый КРТ. Паспорт.
СПДП.421235.001 ПС	Прибор контроля - конфигуратор сетевых устройств ПК-КСУ. Паспорт.
СПМТ.436234.004ПС	Блок автономного питания солнечный БАП-12/0,01-С. Паспорт.
СПМТ.202161.001ПС	Малокадровый видеорегистратор с передачей кадров по радиоканалу MBP. Паспорт.

В настоящем руководстве приняты следующие сокращения:

БАП - блок автономного питания;

БПР - блок питания резервируемый;

БР - блок реле;

БР-ШС8 - блок расширения шлейфов сигнализации

БРР - блок радиореле; БС - блок сопряжения; БСР - блок силового реле;

ЗИП-О - комплект инструмента и принадлежностей одиночный;

ЛВЧ - линия виброчувствительная;

MBP - малокадровый видеорегистратор;ПИ - повторитель интерфейса RS-485;

ПК - персональный компьютер;

ПК-КСУ - прибор контроля – конфигуратор сетевых устройств;

ПУИ - пульт управления и индикации;

РК - радиоканал;

РМО - радиомодем оконечный;

РМЦ-ВУ - радиомодем центральный радиосети верхнего уровня;

РМЦ-НУ- радиомодем центральный радиосети нижнего уровня;

РТС-ВУ - ретранслятор радиосети верхнего уровня; РТС-НУ - ретранслятор радиосети нижнего уровня;

ССОИ - система сбора и обработки информации;

ШС - шлейф сигнализации.

В соответствии с Постановлением Правительства РФ от 13 октября 2011 г. № 837 «О внесении изменений в постановление правительства РФ от 12 октября 2004 г. № 539» все составные части комплекса не подлежат регистрации в радиочастотных органах.

1 Описание и работа

1.1 Назначение и основные технические характеристики изделия

- 1.1.1 Комплекс предназначен для построения системы охранной сигнализации повышенной информативности для стационарных и временных рубежей большой протяженностью, а также для охраны распределенных или удаленных на расстояние до 320 км объектов.
- 1.1.2 Комплекс функционально состоит из ССОИ, периферийного оборудования. Комплекс имеет модульное построение. Модули (составные части) комплекса связаны между собой локальными радио и проводными сетями. Максимальная емкость комплекса 272 адреса.
 - 1.1.3 Комплекс функционально может включать в себя:
 - ПУИ емкостью 32 или 272 адреса;
 - проводную сеть обмена извещениями;
 - радиосети диапазонов 868 и 433 МГц;
 - устройства передачи с использованием GSM сетей;
 - извещатели на основе различных физических принципов;
 - малокадровые видеорегистраторы;
- исполнительные устройства, обеспечивающие интеграцию в комплекс дополнительных систем (видеонаблюдения, контроля и управления доступом и т.д.).

Примечание – Радиосети верхнего уровня и нижнего уровня должны работать в разных частотных диапазонах: 868 МГц или 433 МГц.

- 1.1.4 Назначение основных составных частей комплекса
- 1.1.4.1 ПУИ-32 предназначен для построения одноуровневых и двухуровневых ССОИ средней емкости, при автономной работе обеспечивает:
- контроль состояния и отображение текущей и тревожной информации от извещателей;
 - контроль и изменение определенных параметров извещателей;
 - управление выносными оповещателями;
 - выдачу звукового сигнала «Тревога»;
 - взятие под охрану и снятие с охраны извещателей;
- автоматическое и ручное управление, в том числе выборочное, исполнительными устройствами.
- ПУИ-32-1 дополнительно обеспечивает адресный контроль состояния линии одного фланга из состава извещателя охранного вибрационного ВИБРОН-01.

Предусмотрена возможность подключения ПУИ-32 к ПК для обновления программного обеспечения и включения комплекса в интегрированную систему охраны на базе ПК.

1.1.4.2 ПУИ-272 предназначен для построения только двухуровневых ССОИ большой емкости (до 256 конечных устройств, подключаемых

посредством радиосети и до 16, подключаемых посредством интерфейса RS-485) и обеспечивает:

- индикацию на встроенном жидкокристаллическом дисплее текущей и тревожной информации от извещателей;
 - управление выносными оповещателями;
 - выдачу звукового сигнала «Тревога»;
 - взятие под охрану и снятие с охраны извещателей;
- автоматическое и ручное управление 32 исполнительными устройствами.

Предусмотрена возможность подключения ПУИ-272 к ПК для обновления программного обеспечения и включения комплекса в интегрированную систему охраны на базе ПК.

1.1.4.3 Радиомодем центральный сети верхнего уровня РМЦ-ВУ предназначен для организации радиосетей с произвольной топологией под управлением ПУИ. РМЦ-ВУ подключается к ПУИ посредством RS-485.

Вариант исполнения РМЦ-ВУ поддерживает топологию радиосети типа «магистраль» (в одну линию) и обеспечивает обмен извещениями в режиме «Малый пакет».

Вариант исполнения РМЦ-ВУ/1 поддерживает топологию радиосети типа «дерево», которая позволяет произвольно разветвлять маршруты доставки извещений, и обеспечивает обмен извещениями в режиме «Большой пакет».

- 1.1.4.4 Радиомодем центральный сети нижнего уровня РМЦ-НУ предназначен для организации радиосетей с топологией типа «звезда» под управлением ПУИ или РТС-ВУ/1.
- 1.1.4.5 Блок питания резервируемый БПР-12/0,2-1 предназначен для питания составных частей комплекса (ПУИ, РМЦ) от сети переменного тока 220 В.
- 1.1.4.6 РТС-ВУ предназначен для организации радиосети с топологией типа «магистраль» для обмена извещениями РМЦ-ВУ с удаленными извещателями путем многоступенчатой ретрансляции. РТС-ВУ имеет вариант исполнения РТС-ВУ/1, отличающийся возможностью подключения устройств, в том числе РМЦ-НУ, посредством интерфейса RS-485.
- 1.1.4.7 ПИ позволяет формировать проводную сеть произвольной конфигурации и предназначен для:
 - удлинения линии интерфейса RS-485;
 - ответвления линии интерфейса RS-485 (длиной более 10 м);
 - гальванической развязки сетевых устройств в линии.
- 1.1.4.8 БР предназначен для сопряжения комплекса с системой охранного видеонаблюдения или интеграции комплекса с использованием ПУИ в систему более высокого уровня. БР обеспечивает коммутацию до восьми маломощных цепей под управлением ПУИ. БР к ПУИ подключается посредством RS-485.

- 1.1.4.9 БСР предназначен для коммутации одной цепи переменного тока 220В мощностью до 0,5 кВт под управлением ПУИ. БСР к ПУИ подключается посредством RS-485.
- 1.1.4.10 БС1 предназначен для организации обмена извещениями ПУИ с одним извещателем типа ТАНТАЛ, АНТИРИС и т.п., обеспечивая его включение в комплекс. При этом БС1 обеспечивает выполнение функций распределительной коробки извещателя.
- 1.1.4.11 БС2 предназначен для контроля состояния двух стандартных ШС и передачи извещений об их состоянии на ПУИ посредством RS-485, обеспечивая включение извещателей со стандартным интерфейсом в комплекс.

1.1.4.12 Извещатели

- а) ДПР-200 (радиолучевой двухпозиционный) предназначен ДЛЯ средства обнаружения использования качестве человека на В огражденных рубежах для открытого размещения и подготовленных. формирования охраняемой зоны вдоль рубежа. ДПР-200 и ДПР-200М обеспечивают непосредственную передачу извещений по РК. Вариант исполнения ДПР-200П имеет на выходе «сухие» контакты, обеспечивает передачу извещений по проводной линии и может использовать как автономное, так и централизованное питание.
- б) ДПР-10В (радиоволновый двухпозиционный взрывозащищенный) предназначен для использования в качестве средства обнаружения проникновения человека на открытых площадках, имеющих металлическое или железобетонное ограждение. ДПР-10В обеспечивает передачу извещений по проводной линии или по РК посредством специально предназначенного для этого устройства РМО1.
- в) ВИБРОН-01 (вибрационный) предназначен для использования в качестве средства охранной сигнализации для обнаружения преодоления нарушителем (человеком) заграждения, выполненного из сварной металлической сетки типа ССЦП.
- 1.1.4.13 РМО-1 предназначен для обеспечения функционирования в составе комплекса извещателя ДПР-10В или ему подобного, имеющего малое собственное энергопотребление, и интерфейс в виде двух цепей: ШС выход извещателя и шлейф блокировки (ШБ) выход датчика вскрытия. Цепи замкнуты на минус питания в нормальном режиме и разомкнуты в режиме тревоги.
- 1.1.4.14 PMO2 предназначен контроля для состояния двух стандартных ШС и передачи извещений об их состоянии на ПУИ обеспечивая радиоканала, посредством включение извещателей CO стандартным интерфейсом в комплекс.
- 1.1.4.15 БРР-4 предназначен для коммутации до четырех маломощных цепей. БРР-4 к ПУИ подключается посредством радиосети. БРР может быть использован для оповещения дополнительного удаленного от ПУИ поста охраны при помощи встроенных и выносных световых звукового оповещателей.

- 1.1.4.16 РТС-НУ предназначен для обеспечения радиосвязи с одним или двумя оконечными устройствами, удаленными или установленными вне прямой видимости, путем одноступенчатой ретрансляции. В сети, образованной ПУИ-32, могут работать не более двух РТС-НУ.
- 1.1.4.17 КД-СКОП предназначен для управления доступом через одну точку доступа с использованием считывателя PR-EH05, проверки прав доступа и управления запорными устройствами (электромеханическими и электромагнитными замками и защелками). КД-СКОП обеспечивает контроль состояния одного стандартного ШС. Возможно автономное использование КД-СКОП.
- 1.1.4.18 БР-ШС8 предназначен для увеличения информационной емкости периферийного оборудования комплекса, обеспечивает контроль состояния до восьми ШС, адресную индикацию извещений о тревоге по всем контролируемым ШС и выдачу извещений об их состоянии посредством одного ШС. В контролируемые ШС могут быть включены извещатели из состава комплекса ДПР-200П, ДПР-10В, а также другие любые извещатели с контактной группой на выходе. Выходная цепь БР-ШС8 может быть подключена к следующим устройствам комплекса: РТС-ВУ, РМО2, БС2, а также к любым приемно-контрольным приборам, обеспечивающим контроль цепи ШС. БР-ШС8 имеет малое собственное энергопотребление и может быть использован для организации охраны локальных объектов в отсутствии централизованного питания.
- 1.1.4.19 МВР предназначен для видеоконтроля состояния охраняемого объекта (площадки) с целью верификации извещений о тревоге. МВР обеспечивает совместное функционирование в составе комплекса с извещателем ДПР-10В, или другого с цепью, размыкающейся при тревоге и замкнутой в дежурном режиме. Передача видеокадров и извещений о состоянии контролируемого извещателя на пульт управления и индикации (ПУИ) обеспечивается посредством радиоканала или интерфейса RS-485.
- 1.1.4.20 Комплект GSM-ПРМ и комплекты GSM-ПРД предназначены для передачи извещений посредством GSM канала. GSM-ПРМ при помощи интерфейса RS-485 подключается к ПУИ комплекса, или к любому другому комплексу, при условии программной интеграции. Посредством коммутации выходных GSM-ПРМ подключается к любому ППК, обеспечивающему работу со стандартным интерфейсом. GSM-ПРД предназначен для контроля состояния двух стандартных ШС, обеспечивая включение извещателей со стандартным интерфейсом в комплекс
- 1.1.4.21 ПК-КСУ предназначен конфигурирования ДЛЯ сетевых устройств комплекса В процессе эксплуатации, контроля работоспособности и настройки извещателей комплекса, также извещателей, программно интегрированных в комплекс (приложение Б).
- 1.1.4.22 Радиоудлинитель РУ1 предназначен для подключения извещателей ДПР-10В, ДПР-200П, ПРЕДЕЛ, АНТИРИС посредством радиоканала к проводной сети комплекса, или к другим приемно-

контрольным приборам (ППК). Возможно подключение любых извещателей с контактной группой на выходе, размыкающейся при тревоге на время не менее 0,4 с. Максимальная дальность связи между блоками радиоудлинителя в условиях прямой видимости составляет не менее 75 м.

- 1.1.4.23 Комплект радиоканала тестовый КРТ предназначен для измерения уровня сигнала при установке двух устройств радиосети в выбранных точках местности. **KPT** может использоваться при обследовании предпроектном ДЛЯ определения возможности использования РК на конкретном направлении, оптимального места установки устройств, высоты размещения антенн, а также при монтаже оборудования для точного юстирования направленных антенн.
- 1.1.4.24 Комплект ЗИП-О предназначен для обеспечения функционирования комплекса. В случае если не в полной мере учтены или изменились условия эксплуатации при инсталляции и последующей эксплуатации, наличие комплекта ЗИП-О позволяет нарастить комплекс. Комплект ЗИП-О также позволяет обеспечить оперативное восстановление функционирования комплекса в процессе эксплуатации путем замены отказавших составных частей силами обслуживающего персонала. Состав ЗИП-О определяется при заказе комплекса исходя из особенностей применения и рекомендаций раздела 1.2.
 - 1.1.5 Комплекс предназначен для непрерывной круглосуточной работы.
- 1.1.6 Линейное оборудование комплекса соответствует виду климатического исполнения УХЛ1 по ГОСТ 15150-69.

Примечание – Диапазон рабочих температур составных частей указан в соответствующих эксплуатационных документах.

- 1.1.7 ПУИ соответствуют виду климатического исполнения У3.1 по ГОСТ 15150-69 (температура от минус 10 до плюс 45°C).
- 1.1.8 ПК-КСУ соответствует виду климатического исполнения У1.1 по ГОСТ 15150-69, при температуре от минус 20 до плюс 45°C.
- 1.1.9 Электропитание ПУИ и РМЦ осуществляется от сети 220 В посредством резервируемых источников с номинальным напряжением 12 В, входящих в состав комплекса.
- 1.1.10 Электропитание оборудования линейного автономным питанием (ДПР-200, ДПР-10В, РМО, РТС-НУ и т.д.) осуществляется от БАП, входящих в комплект их поставки. Предусмотрена возможность питания таких изделий от солнечных блоков автономного питания БАП-12/0,01-С. Особенностью БАП-12/0,01-С является возможность автоматического резервирования помощью БАП, что обеспечивает С функционирование питаемых приборов даже в районах с недостаточной в зимнее время солнечной инсоляцией. БАП-12/0,01-С также обеспечивает питание РТС-ВУ, РТС-ВУ/1 и подключенного к нему РМЦ-НУ. Возможно питание РТС-ВУ, РТС-ВУ/1 и подключенного к нему оборудования от БПР-12/02-1.
- 1.1.11 Максимальная длина проводной линии связи RS-485 без использования ПИ составляет не менее 1500 м.

- 1.1.12 Радиосеть верхнего уровня имеет четыре возможных варианта номера сети и четыре возможных номера частотного канала для каждого номера сети, радиосеть нижнего уровня четыре возможных варианта номера сети и четыре возможных номера частотного канала для каждого номера сети в пределах одного из частотных диапазонов:
 - от 868,7 до 869,2 МГц;
 - от 433,075 до 434,79 МГц.
- 1.1.13 Выходная мощность передатчиков радиосети диапазона 868 МГц не более 25 мВт, диапазона 433 не более 10 мВт.
- 1.1.14 Дальность связи для устройств радиосети нижнего уровня указана в эксплуатационной документации конечных устройств и может составлять от 750 до 6000 м в зависимости от используемых антенн.
- 1.1.15 Сеть обмена данными обеспечивает передачу следующих информационных извещений:
 - а) извещение о тревоге;
 - б) извещение о неисправности;
 - в) извещение о вскрытии;
 - г) извещение о разряде элемента питания;
 - д) извещение о помехе;
- е) извещение о потере связи с любым сетевым устройством за исключением исполнительных;
 - ж) извещения об установленных параметрах извещателей;
- з) извещения-команды на изменение режимов и параметров извещателей, включение исполнительного устройства);
 - и) извещения об изменении параметров извещателей.
- 1.1.16 Каждый извещатель и РМО имеет свой индивидуальный заводской номер, обеспечивающий их идентификацию в сети после включения или временной потери связи, что исключает саботаж работы комплекса путем подмены сетевого устройства.
- 1.1.17 Максимальное время задержки оповещения о тревоге с момента формирования извещения о тревоге извещателем 10 с.
- 1.1.18 Время видеорегистрации с момента поступления запроса не более 1,5 с. Время доставки около 16 с.
- 1.1.19 Составные части комплекса соответствуют требованиям ГОСТ 12.2.007.0-75 по электробезопасности и ГОСТ Р50009-2000 по устойчивости к радиочастотному электромагнитному полю и уровню радиопомех.
- 1.1.20 Назначение и технические характеристики всех составных частей приведены в соответствующих эксплуатационных документах, перечисленных в таблице 1.1.
- 1.1.21 Пример записи обозначения комплекса при его заказе и в других документах: «Сигнализационный комплекс охраны периметра СПДП.425628.002ТУ», в

составе (комплектация в соответствии с заказом).

Рекомендуется прилагать к заказу структуру радиосетей комплекса по форме, приведенной в приложении Б. В этом случае конфигурирование комплекса будет выполнено при поставке.

1.2 Состав изделия

- 1.2.1 Основные составные части комплекса приведены в таблице 1.2.
- 1.2.2 Комплектность составных частей приведена в соответствующих эксплуатационных документах.
- 1.2.3 В состав комплекса также входят программно интегрированные извещатели согласно перечня, приведенного в приложении Б. Питание извещателей должно быть обеспечено в соответствие с указаниями их эксплуатационных документов.
- 1.2.4 В состав комплекса могут быть интегрированы и включены компоненты дополнительных систем (видеонаблюдения, контроля и управления доступом и т.д.).
 - 1.2.5 Конкретный состав комплекса определяется при заказе.

Таблица 1.2 – Состав комплекса

Nº	Наименование
1	Пульт управления и индикации ПУИ-32
2	Пульт управления и индикации ПУИ-272.
3	Радиомодем центральный сети верхнего уровня РМЦ-ВУ.
4	Ретранслятор сети верхнего уровня РТС-ВУ.
5	Радиомодем центральный сети нижнего уровня РМЦ-НУ
6	Блок питания резервируемый БПР-12/0,2-1
7	Блок реле БР
8	Блок силового реле БСР
9	Блок сопряжения БС1
10	Блок сопряжения БС2
11	Ретранслятор сети нижнего уровня РТС-НУ
12	Извещатель охранный радиолучевой двухпозиционный с передачей извещений по радиоканалу ДПР-200
13	Извещатель охранный объемный радиоволновый взрывозащищенный ДПР-10В
14	Комплект GSM-ПРМ
15	Комплект GSM-ПРД

Продолжение таблицы 1.2

	олжение таолицы т.z		
Nº	Наименование		
16	Повторитель интерфейса ПИ-RS485		
17	Радиомодем оконечный РМО1		
18	Радиомодем оконечный РМО2		
19	Малокадровый видеорегистратор МВР-Р		
20	Блок радиореле БРР-4		
21	Блок автономного питания солнечный БАП-12/0,01-С		
22	Контроллер доступа КД-СКОП		
23	Прибор контроля – конфигуратор сетевых устройств ПК-КСУ		
24	Радиоудлинитель РУ1		
25	Блок расширения шлейфов сигнализации БР-ШС8		
26	Комплект радиоканала тестовый КРТ		
27	Быстроразвертываемый (мобильный) комплект периметровых средств обнаружения		
28	Комплект ЗИП-О, рекомендуется в количестве 10% от общего количества блоков		
Примечание – Дополнительные варианты исполнения составных			
	ей в таблице не приведены.		

частей в таолице не приведены.

1.3 Устройство и работа

Принципы построения и функционирования комплекса определили следующие основные функциональные особенности.

- Модульное построение обеспечивает построение различных по функциональным возможностям при соответствующем емкости сочетании компонентов-модулей комплексов. При этом обеспечивается возможность использования проводных, беспроводных линий связи или их комбинаций. Предусмотрена возможность интеграции видеосистемы, управляемой комплексом, с передачей видеоинформации по независимой радио или кабельной сети.
- Простое проводное или беспроводное подключение компонентов, наличие в составе комплекса готовых КМЧ, включая винтовые опоры, обеспечивает быстрое развертывание комплекса даже при стационарном размещении.
- Гарантированная доставка извещений обеспечивается за счет сетевого построения ССОИ с обязательным подтверждением приема (квитированием).
- Комплекс имеет высокую информативность, включая возможность контроля и изменения части параметров извещателей со станционной части при одноуровневой радиосети.

- Наличие в составе комплекса извещателей с использованием различных физических принципах обеспечивает решение всех задач обнаружения нарушителя.
- Малое энергопотребление всех компонентов линейной части комплекса, питающихся от автономных химических источников (БАП), и гарантированный срок непрерывной работы от БАП (три года) при любых условиях эксплуатации обеспечиваются особенностями средств обнаружения, ограничениями по топологии сети нижнего уровня и программной системой стабилизации тока потребления в нештатных режимах.

Пример проводной сети С использованием радиоволновых показан на рисунке 1.1. Пример проводной сети с извещателей, использованием вибрационных извещателей, показан на рисунке 1.2. С ΜΟΓΥΤ быть помощью проводной сети В комплекс непосредственно к ПУИ извещатели ВИБРОН-01, СЕЧЕНЬ и т.п., имеющие интерфейс RS-485, а также посредством блоков сопряжения извещатели АНТИРИС, ПРЕДЕЛ, и т.п. Посредством блоков сопряжения БС2 в состав комплекса подключаются извещатели, имеющие на выходе цепь в виде «сухих» контактов, размыкающуюся при тревоге. В частных случаях, например – для подключения к проводной сети извещателя ДПР-10В на площадке, не имеющей возможности подводки кабелей, используется радиоудлинитель РУ1 (РУ-ПРД, РУ-ПРМ). Для удлинения и ответвления линии интерфейса RS-485, а также гальванической развязки устройств, питающихся от различных источников (сетей), используется ПИ.

подключения обеспечивает Комплекс возможность устройств и в том числе извещателей не только с помощью проводного интерфейса, но и посредством радиоканала (РК). Структура комплекса с РК нижнего уровня показана на рисунке 1.3. Обмен извещениями в радиосети нижнего уровня организуют РМЦ-НУ, подключающийся к ПУИ также при помощи проводного интерфейса RS-485. Радиосеть нижнего уровня строится на базе одномодемных приемопередающих устройств и обеспечивает только топологию «звезда» при гарантированном интегральном уровне энергопотребления. Предусмотрена возможность ретрансляции по отдельным направлениям: до двух ретрансляторов в ретранслятор обеспечивает подключение Каждый извещателей. Пример радиосети нижнего уровня, показан на рисунке 1.4.

Радиосеть верхнего уровня строится на базе двухмодемных приемопередающих устройств. Каждый модем работает с отдельной антенной. Вариант радиосети с использованием РМЦ-ВУ и РТС-ВУ поддерживает топологию типа «магистраль» (до 32 РТС-ВУ в одну линию) и обеспечивает обмен извещениями в режиме «Малый пакет», включающий:

- извещение о тревоге для извещателей, подключаемых к РТС-ВУ посредством проводного шлейфа сигнализации;
 - извещение о вскрытии РТС-ВУ;

- служебные извещения.

Радиосеть верхнего уровня с использованием РМЦ-ВУ/1 и РТС-ВУ/1 поддерживает топологию типа «дерево», которая позволяет произвольно разветвлять маршруты доставки извещений, и обеспечивает обмен извещениями в режиме «Большой пакет», включающий:

- извещение о тревоге для извещателей, подключаемых к РТС-ВУ посредством проводного шлейфа сигнализации;
- индивидуальные извещения о состоянии до 16 извещателей, подключаемых посредством RS-485 и РМЦ-НУ;
 - извещения о вскрытии РТС-ВУ/1;
 - служебные извещения.

Примечание — Частными случаями топологии типа «дерево», являются топологии «магистраль» и «звезда».

Пример радиосети только верхнего уровня с топологией типа «магистраль», показан на рисунке 1.5, двухуровневой радиосети с топологией типа «магистраль» – на рисунке 1.6, двухуровневой радиосети с топологией типа «дерево» – на рисунке 1.7.

Предусмотрена возможность передачи извещений с использованием имеющихся GSM сетей. При подключении к ПУИ-32 комплекса посредством интерфейса RS-485 GSM-ПРМ обеспечивает контроль до 32 GSM-ПРД. При подключении посредством собственных реле GSM-ПРМ обеспечивает контроль одного GSM-ПРД, посредством RS-485 и блок реле (БР) – до 8 GSM-ПРД.

Принцип действия извещателей описан в соответствующих эксплуатационных документах.

Особенностью системы видеорегистрации на базе малокадрового видеорегистратора MBP-P или MBP-RS485 является использование штатных каналов передачи извещений.

Сопряжение комплекса с системой охранного видеонаблюдения или интеграцию в систему более высокого уровня обеспечивает блок реле (БР). БР осуществляет коммутацию до восьми цепей. Включение в комплекс различных исполнительных устройств, питаемых переменным током, в том числе — устройств охранного освещения обеспечивает блок силового реле (БСР). БСР осуществляет коммутацию одной цепи. БР и БСР подключаются к сети обмена извещениями посредством интерфейса RS-485 и управляются извещениями-командами, формируемыми ПУИ.

Оповещение удаленных постов охраны или включение каких-либо исполнительных устройств по сигналу с ПУИ осуществляется при помощи блока радиореле БРР-4.

Конфигурирование сетевых устройств, а также контроль и настройка параметров извещателей, РТС и РМО, входящих в состав комплекса, выполняются при помощи ПК-КСУ. Описание функционирования ПК-КСУ приведено в его паспорте.

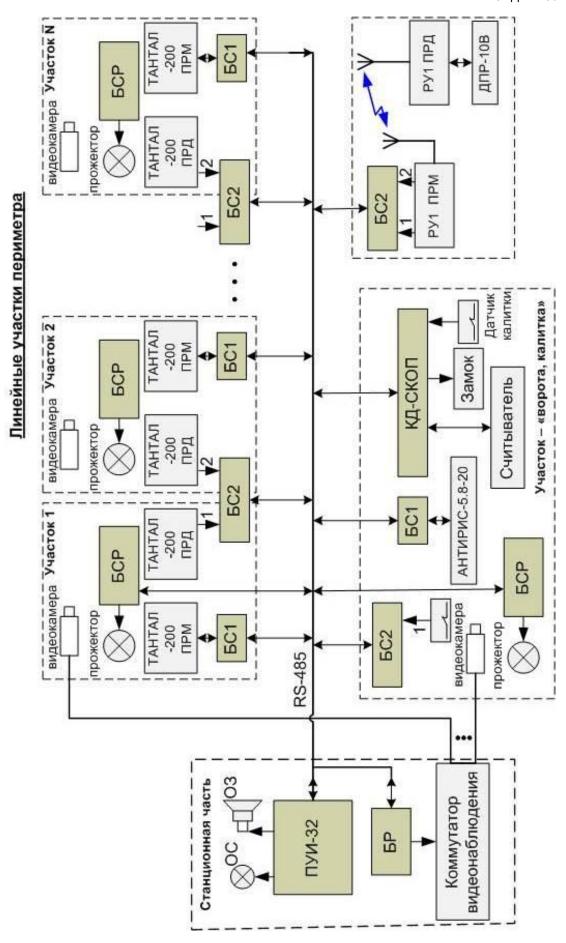


Рисунок 1.1 – Пример проводной сети с радиоволновыми извещателями

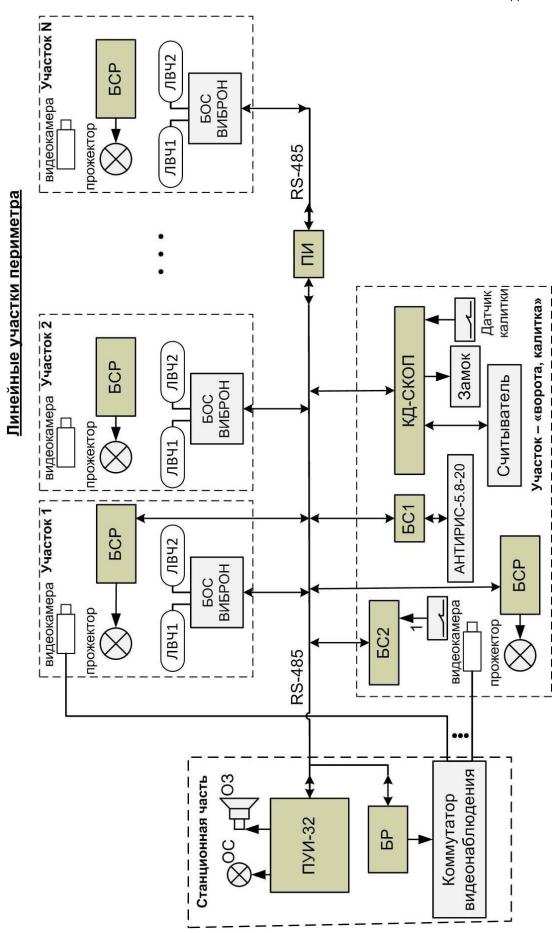


Рисунок 1.2 – Пример проводной сети с вибрационными извещателями

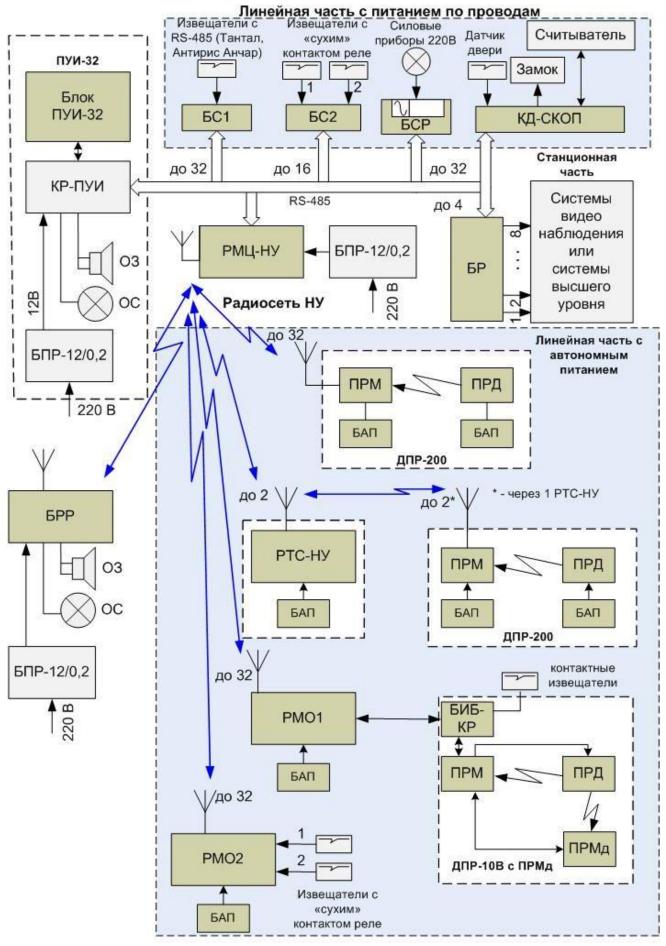


Рисунок 1.3 – Структура комплекса с РК нижнего уровня

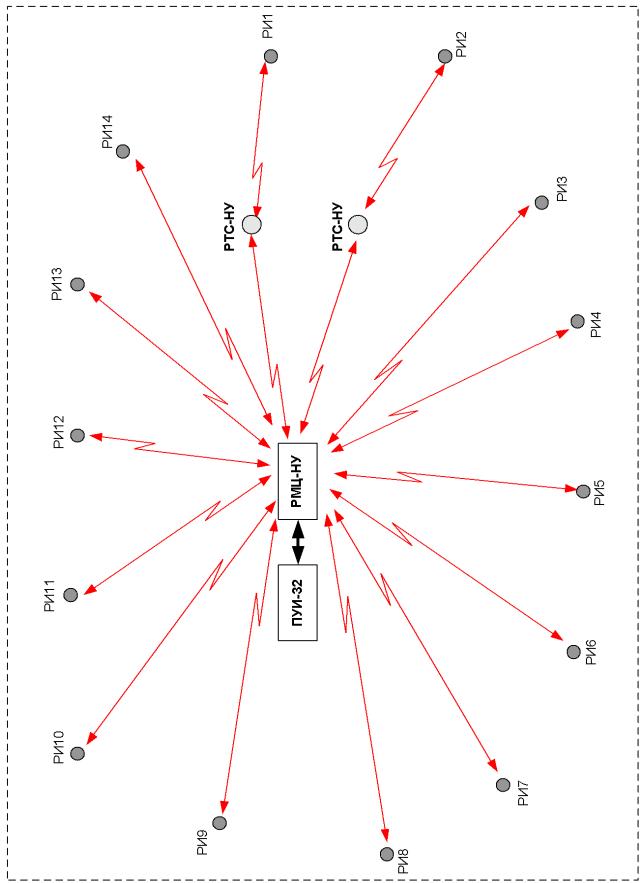


Рисунок 1.4 – Пример построения радиосети нижнего уровня

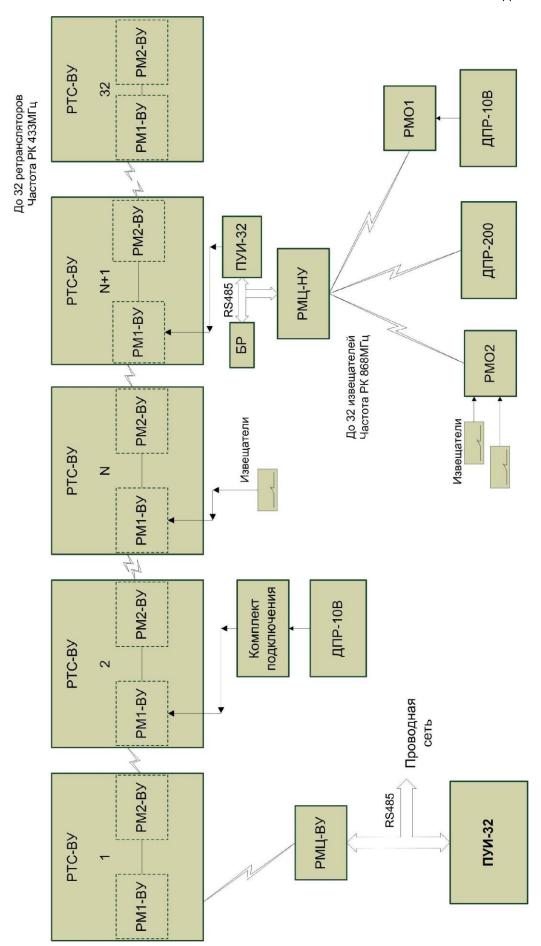


Рисунок 1.5 – Пример радиосети ВУ с топологией «магистраль»

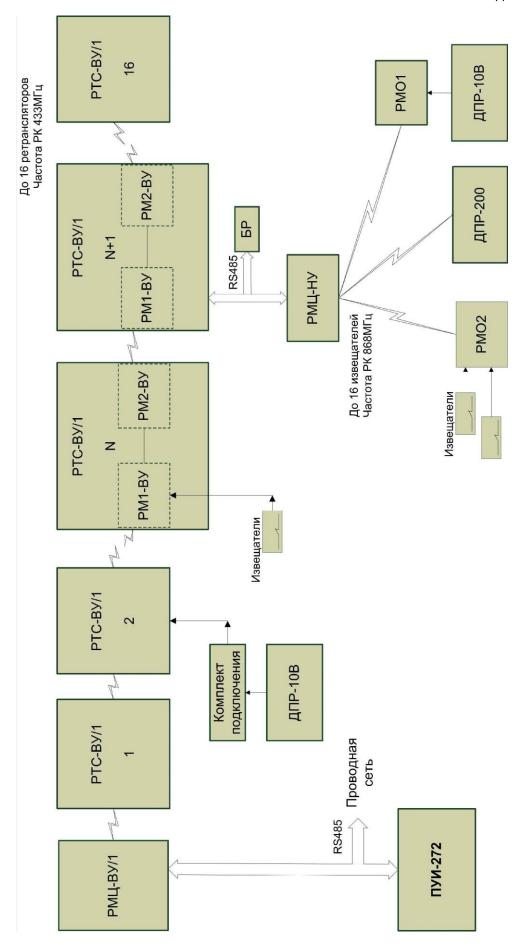


Рисунок 1.6 – Пример двухуровневой радиосети «магистраль»

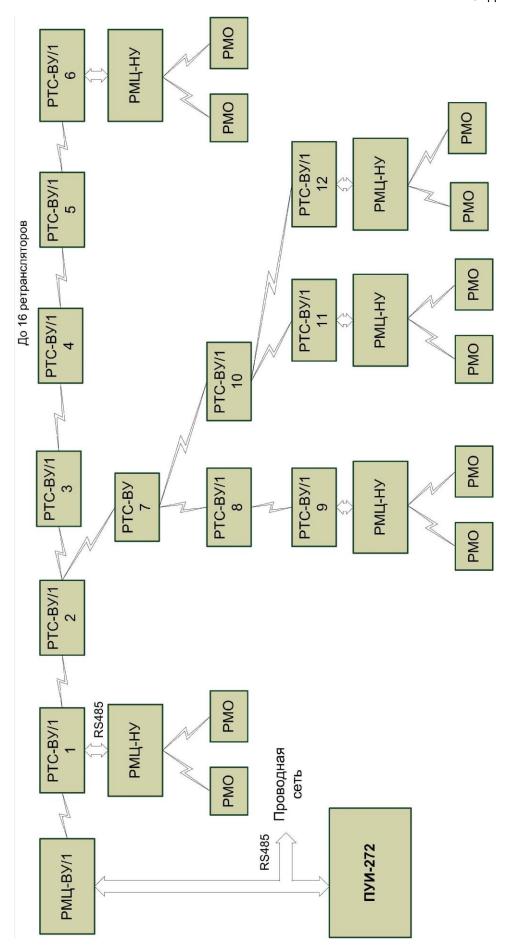


Рисунок 1.7 – Пример двухуровневой радиосети «дерево»

1.4 Маркировка и пломбирование

- 1.4.1 Маркировка составных частей приведена в соответствующих эксплуатационных документах и в общем случае содержит:
 - товарный знак предприятия-изготовителя;
 - наименование составной части;
 - заводской порядковый номер;
 - год и квартал изготовления.
- 1.4.2 Маркировка упаковки (потребительской тары) составных частей содержит:
 - наименование составной части;
 - номер ТУ;
 - товарный знак предприятия-изготовителя;
 - заводской номер наименование составной части;
 - год и месяц упаковывания;
 - штамп ОТК.

1.5 Упаковка

- 1.5.1 Описание упаковки составных частей комплекса приведено в соответствующих эксплуатационных документах.
- 1.5.2 В качестве транспортной тары используются ящики типа VI по ГОСТ 5959-80. Пустоты в ящике заполняются амортизирующим материалом для устранения возможности перемещения содержимого в ящике при транспортировании. В ящик вкладываются эксплуатационная документация на комплекс и упаковочная ведомость с указанием составных частей и документов, подлежащих упаковке. Допускается использовать в качестве транспортной тары ящик из гофрированного картона по ГОСТ 9142-90 в случаях, если максимальный линейный размер ящика не превышает 750 мм.
- 1.5.3 После вскрытия ящика и изъятия составных частей тара возврату не подлежит.

2 Использование по назначению

2.1 Эксплуатационные ограничения

- 2.1.1 Определение структуры и топологии комплекса
- 2.1.1.1 При определении структуры и топологии комплекса следует учитывать функциональные особенности и эксплуатационные ограничения, приведенные в следующих пунктах.
- 2.1.1.2 При проектировании системы охраны с использованием комплекса необходима привязка проекта к особенностям местности, для чего должно проводиться предпроектное обследование. Хотя особенности комплекса позволяют при его инсталляции достаточно легко устранить проектные ошибки размещения составных частей (изменение места расположения и добавление блоков из комплекта ЗИП-О комплекса), тщательно выполненное предпроектное обследование ускоряет процесс инсталляции и уменьшает расход ЗИПа при инсталляции. Результатом обследования должны быть схема размещения составных частей комплекса плане указанием на местности с маршрутов доставки извещений и структура комплекса.

Примечание — С учетом особенностей комплекса возможно оборудование небольших объектов без этапа проектирования, только по результатам обследования.

- 2.1.1.3 В процессе предпроектного обследования выполняются следующие действия.
- Определяются места размещения извещателей исходя из требований соответствующих эксплуатационных документов. Рассчитывается требуемое количество извещателей.
- Определяются места размещения составных частей, подключаемых с использованием проводной линии, намечаются трассы прокладки кабелей. Длина проводной линии интерфейса RS-485 не должна превышать 1500 м с учетом возможностей прокладки, при необходимости определяются требуемое количество и места размещения ПИ для удлинения или ответвления линии.
- Исходя из предварительно выбранных мест размещения ПУИ и извещателей, подключаемых посредством радиосети, максимальной дальности действия радиоканала и условия обеспечения прямой видимости определяются: места установки РМЦ-НУ и его антенны; тип антенны; необходимость и высота мачты для крепления антенны.
- Определяются топология и количество уровней радиосети. Радиосети верхнего и нижнего уровней должны использовать разные частотные диапазоны.
- При необходимости определяются маршруты передачи извещений с использованием РТС и места размещения РТС.
- Задаются номера радиосетей и номера частотных каналов в произвольном порядке. Для исключения взаимных помех сочетание номеров сетей и каналов одного частотного диапазона, работающих в

пределах расстояния, превышающего максимальную дальность действия радиоканала для выбранных антенн менее чем в три раза, должны быть разными. То есть для совместной работы двух сетей достаточно, чтобы отличались номера каналов или номера сетей и таким образом в пределах одного объекта в нижнем уровне могут одновременно работать до 16 сетей, в верхнем — до 6 сетей. Требование не предъявляется для направленных антенн вне их диаграммы направленности, но следует учитывать возможность помех от радиоволн, отраженных от крупных предметов (строений).

- Задаются собственные номера сетевых устройств в пределах каждой сети. Для РТС-НУ задаются номера разрешенных абонентов.
- В случае интеграции в комплекс системы охранного телевидения или освещения выбираются места их размещения, и с учетом количества приборов и места размещения определяются тип и потребное количество БР и БСР.
- В случае необходимости трансляции обобщенного сигнала тревоги на удаленный пост охраны выбираются место размещения и тип БРР, при необходимости РТС-НУ. Для трансляции сигналов тревоги с привязкой индикации (реле) к группе контролируемых извещателей или ШС (до четырех групп) используется БРР-4.
- Составляется схема размещения составных частей комплекса на плане местности с указанием маршрутов доставки извещений.
- На основании схемы определяется структура радиосетей комплекса, которая является техническим заданием на конфигурирование комплекса. Пример структуры радиосетей комплекса приведен в приложении А.

Примечание – Последовательность действий может быть изменена с учетом особенностей объекта и приоритетов параметров системы охраны.

- 2.1.1.4 Для обеспечения устойчивой радиосвязи между абонентами сети необходимо учитывать следующее.
- Штыревые и коллинеарные антенны должны располагаться не ближе 1м по горизонтали от металлических предметов и железобетонных конструкций.
- Лесные вблизи мест распространения массивы радиоволн, поверхности значительные неровности земной (более 1 перекрывающие прямой видимости, МОГУТ снижать дальность радиосвязи. Рекомендуется в таких местах расстояния между составными частями, приведенных в эксплуатационных документах на составные части комплекса, уменьшать в 1,5 раза.
- Максимальная дальность радиосвязи обеспечивается только в случае прямой видимости между разрешенными абонентами, в противном случае дальность сокращается. При невозможности обеспечения прямой видимости необходимо в рамках предпроектного обследования объекта охраны проверить качество радиосвязи на выбранных местах с учетом типа выбранных антенн и экспериментально подобрать места крепления

антенн, обеспечивающие надежную связь. При определении качества связи использовать комплект радиоканала тестовый СПМТ.464945.001.

2.2 Подготовка изделия к использованию

- 2.2.1 Распаковать комплекс и проверить соответствие комплектности и конфигурации комплекса проекту (заказу). Если конфигурирование не выполнено при поставке на предприятии-изготовителе, выполнить конфигурирование устройств радиосети верхнего уровня, пользуясь указаниями эксплуатационных документов.
- 2.2.2 Произвести монтаж составных частей комплекса на местах, определенных проектом (схемой размещения составных частей комплекса), с учетом параметров конфигурации, указанных в паспортах и нанесенных на блоки. Правила монтажа и меры безопасности при проведении работ приведены в эксплуатационных документах на составные части комплекса. Там же приведены действия по включению настройке и апробированию каждой составной части в отдельности.
- 2.2.3 Включить питание, произвести настройку и апробирование функционирования всех составных частей в отдельности. Рекомендуемая последовательность включения составных частей от станционной части к периферии.
- 2.2.4 Провести апробирование работы комплекса путем пробной круглосуточной эксплуатации в течение периода не менее трех суток с регистрацией всех извещений и последующим их анализом. При этом не реже двух раз в сутки производить проверку работоспособности всех составных частей.

При выявлении нарушений в работе необходимо устранить их, пользуясь указаниями подраздела 2.1 и эксплуатационных документов на составные части.

2.3 Использование изделия

Тактика и правила использования комплекса устанавливаются инструкциями службы эксплуатации.

Указания по использованию составных частей приведены в соответствующих эксплуатационных документах.

3 Техническое обслуживание

- 3.1 Техническое обслуживание комплекса проводится по плановопредупредительной системе и предусматривает обязательное проведение установленных видов планового технического обслуживания. Предусматриваются дополнительные работы при изменении природных условий, способных повлиять на его работоспособность.
- 3.2 При использовании и хранении комплекса должны проводиться следующие виды технического обслуживания:
 - техническое обслуживание № 1 (ТО-1);
 - техническое обслуживание № 2 (ТО-2);
 - техническое обслуживание № 3 (ТО-3).
- 3.3 Отметка о проведении ТО делается в аппаратном (техническом) журнале эксплуатирующей организации.
- 3.4 Периодичность и содержание работ, выполняемых при техническом обслуживании, приведены в таблице 3.1. и могут корректироваться в зависимости от особенностей и условий эксплуатации, а также от технического состояния составных частей комплекса.
- 3.5 Техническое обслуживание проводится по графику, который составляется эксплуатирующей организацией при разработке плана технического обслуживания.
- 3.6 Ремонт составных частей комплекса производится на предприятии изготовителе.

Таблица 3.1 – Периодичность и содержание работ

такинда от тариоди шоото и оодорими и ракот.						
Виды ТО	Перечень работ	Периодичность				
TO-1	Проверка состояния рубежа охраны	Один раз в				
	Проверка внешнего состояния составных частей	месяц				
	Проверка работоспособности извещателей					
	проверка расотоснособности извещателей					
TO-2	Проверка установок извещателей.	Один раз в				
		три месяца				
TO-3	Замена блоков автономного питания.	Один раз в				
		три года				
	_					

Примечание - После пылевых и снежных бурь, сильных ливней рекомендуется проведение внепланового ТО-1.

3.7 Указания (методика) по выполнению работ приведены в эксплуатационных документах на используемые составные части.

4 Хранение, транспортирование и утилизация

Комплексы и их составные части должны храниться в упакованном виде на складах при температуре окружающего воздуха от 5°C до 30°C и относительной влажности воздуха не более 85%.

Воздействие агрессивных сред в процессе хранения не допускается.

Транспортирование упакованных комплексов и их составных частей может производиться любым видом транспорта (воздушным — в герметизированных отсеках) при условии перевозки в крытых вагонах, трюмах или крытых кузовах. Укладку ящиков производить так, чтобы исключить перемещение или падение их при толчках и ударах.

Составные части комплекса не содержат драгоценных и редкоземельных металлов, токсичных материалов.

После окончания службы составные части комплекса подлежат утилизации.

Утилизация отслуживших источников питания осуществляется по нормативным документам эксплуатирующей организации.

Приложение А

(справочное)

Структура радиосети комплекса Пример оформления для двухуровневой радиосети

Nº	Наименование составной части	Собственный номер			
0	ПУИ-272; РМЦ-ВУ	00			
1	PTC-BY/1	01			
2	PTC-BY/1	02			
2.1	ДПР-10В				
3	PTC-BY/1	03			
3.1	РМЦ-НУ	00			
3.2	ДПР-200	01			
3.3	ДПР-200	02			
3.4	ДПР-200	03			
3.5	ДПР-200	04			
3.6	PMO-2	05			
Диаг	Диапазон: ВУ - 868 МГц, НУ – 433 МГц.				

Примечания:

- 1 Указанная структура может быть использована, например, для охраны удаленных от поста охраны крановой и технологической площадок. ДПР-10В размещен на крановой площадке и подключен проводной линией к РТС-ВУ/1 №2, установленному на этой же площадке. Четыре ДПР-200 используются для охраны периметра технологической площадки. ДПР-200 и РМО2 подключены посредством радиосети НУ к РТС-ВУ/1 №3. Первая цифра номера позиции устройства НУ обозначает номер устройства ВУ, к которому подключено данное устройство.
- 2 Собственный номер РМЦ всегда «0**0**» и в таблице приведен для справки.
- 3 Номер позиции для устройств верхнего уровня определяет последовательность их размещения на местности в порядке удаления от РМЦ.
- 4 При необходимости в структуре указываются требуемые номера сетей и частотных каналов (в случае, если на объекте уже присутствуют ранее установленные компоненты другого комплекса).

Приложение Б

(справочное)

Перечень программно интегрированных в комплекс извещателей

- В.1 Извещатель охранный радиоволновый АНТИРИС-24-80 и его варианты исполнения.
- В.2 Извещатель охранный радиоволновый АНТИРИС-24-40 и его варианты исполнения.
- В.3 Извещатель охранный радиоволновый АНТИРИС-5.8-40 и его варианты исполнения.
- В.4 Извещатель охранный радиоволновый АНТИРИС-5.8-20 и его варианты исполнения.
- В.5 Извещатель охранный радиоволновый ПРЕДЕЛ-200 и его варианты исполнения.
- В.6 Извещатель охранный радиоволновый ПРЕДЕЛ-600 и его варианты исполнения.
- В.7 Извещатель охранный вибрационный ВИБРОН и его варианты исполнения.
- В.8 Извещатель охранный вибрационный СЕЧЕНЬ и его варианты исполнения.

Лист регистрации изменений

	Номера листов (страниц)			Росго		Входящий			
Изм.		заме-		аннулиро- ванных	Всего листов страниц) в докум.	Номер докум.	LIONION	Под- пись	Дата